359 lines
12 KiB
Python
Executable File
359 lines
12 KiB
Python
Executable File
from google.cloud import translate_v2 as Translate
|
|
from google.cloud import translate
|
|
import docx
|
|
import sys
|
|
from .translation_resources import ibm_watson, google, aws, azure, lingvanex, yandex
|
|
from .script_detector import script_cat
|
|
from .script_writing import default_script
|
|
from .translation_metric import manual_diff_score, bleu_diff_score, gleu_diff_score, meteor_diff_score, rouge_diff_score, diff_score, critera4_5
|
|
from .selection_source import selection_source, function5, function41, function311, function221, function2111, function11111, selection_source_transliteration, two_sources_two_outputs
|
|
from tqdm import tqdm
|
|
import os
|
|
from docx.shared import Inches, Cm, Pt
|
|
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
|
from docx.enum.table import WD_TABLE_ALIGNMENT, WD_ALIGN_VERTICAL
|
|
import requests
|
|
import uuid
|
|
import json
|
|
import string
|
|
|
|
# google
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/home/mnfidea/project/MNF/conversion/subtitling/gifted-mountain-318504-0a5f94cda0c8.json"
|
|
translate_client = Translate.Client()
|
|
client = translate.TranslationServiceClient()
|
|
project_id = "excellent-hue-272808"
|
|
location = "global"
|
|
parent = f"projects/{project_id}/locations/{location}"
|
|
|
|
|
|
doc_file = "translated_abc"
|
|
doc2 = docx.Document()
|
|
sections = doc2.sections
|
|
for section in sections:
|
|
section.top_margin = Inches(0.2)
|
|
section.bottom_margin = Inches(0.2)
|
|
section.left_margin = Inches(0.2)
|
|
section.right_margin = Inches(0.2)
|
|
section = doc2.sections[-1]
|
|
new_height = section.page_width
|
|
section.page_width = section.page_height
|
|
section.page_height = new_height
|
|
name = 'Final table '+doc_file
|
|
doc2.add_heading(name, 0)
|
|
doc_para = doc2.add_paragraph()
|
|
doc_para.add_run(
|
|
'Translation resources used : Google, IBM watson, AWS, Azure, Lingvanex, Yandex').bold = True
|
|
table2 = doc2.add_table(rows=1, cols=4)
|
|
table2.style = 'TableGrid'
|
|
hdr_Cells = table2.rows[0].cells
|
|
hdr_Cells[0].paragraphs[0].add_run("Input").bold = True
|
|
hdr_Cells[1].paragraphs[0].add_run("Output1").bold = True
|
|
hdr_Cells[2].paragraphs[0].add_run("Output2").bold = True
|
|
hdr_Cells[3].paragraphs[0].add_run("Output3").bold = True
|
|
|
|
# doc_file = "translated_abc"
|
|
# doc2 = docx.Document()
|
|
# sections = doc2.sections
|
|
# for section in sections:
|
|
# section.top_margin = Inches(0.2)
|
|
# section.bottom_margin = Inches(0.2)
|
|
# section.left_margin = Inches(0.2)
|
|
# section.right_margin = Inches(0.2)
|
|
# section = doc2.sections[-1]
|
|
# new_height = section.page_width
|
|
# section.page_width = section.page_height
|
|
# section.page_height = new_height
|
|
# name = filename
|
|
# doc2.add_heading(name, 0)
|
|
# doc_para = doc2.add_paragraph()
|
|
# #doc_para.add_run('Translation resources used : Google, IBM watson, AWS, Azure, Lingvanex, Yandex').bold = True
|
|
# table2 = doc2.add_table(rows=1,cols=4)
|
|
# table2.style = 'TableGrid'
|
|
# hdr_Cells = table2.rows[0].cells
|
|
# hdr_Cells[0].paragraphs[0].add_run("Original").bold=True
|
|
# hdr_Cells[1].paragraphs[0].add_run("Translated").bold=True
|
|
|
|
|
|
def script_det(text):
|
|
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~“"”'''
|
|
no_punct = ""
|
|
for char in text:
|
|
if char not in punctuations:
|
|
no_punct = char
|
|
break
|
|
#print("alphabet", no_punct)
|
|
script = script_cat(no_punct)[0]
|
|
#print("script", script)
|
|
return script
|
|
|
|
|
|
def language_detector(text):
|
|
result = translate_client.translate(text, target_language='hi')
|
|
det_lang = result["detectedSourceLanguage"]
|
|
return det_lang
|
|
|
|
|
|
def punct_remover(string):
|
|
# punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~…।“”'''
|
|
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~…।1234567890'''
|
|
for x in string.lower():
|
|
if x in punctuations:
|
|
string = string.replace(x, " ")
|
|
return string
|
|
|
|
|
|
def word_transliterate(sentence, dest_script):
|
|
return sentence
|
|
|
|
|
|
def final_out(output1, output2, output3, dest_lang):
|
|
temp_output1 = punct_remover(output1)
|
|
temp_output2 = punct_remover(output2)
|
|
temp_output3 = punct_remover(output3)
|
|
# for word in regexp_tokenize(output1, "[\w']+")
|
|
|
|
for word in temp_output1.split():
|
|
if script_det(word) != default_script[dest_lang]:
|
|
for word in temp_output2.split():
|
|
if script_det(word) != default_script[dest_lang]:
|
|
for word in temp_output3.split():
|
|
if script_det(word) != default_script[dest_lang]:
|
|
# print("in3")
|
|
output1 = word_transliterate(
|
|
output1, default_script[dest_lang])
|
|
return output1
|
|
return output3
|
|
return output2
|
|
return output1
|
|
|
|
|
|
def compare_outputs(sentence, t0, trans, sources_name, target_lang):
|
|
k = []
|
|
s = []
|
|
methods_name = {'0': 'MNF', '1': 'Gleu',
|
|
'2': 'Meteor', '3': 'Rougen', '4': 'Rougel'}
|
|
google_output = t0
|
|
#print("google", google_output)
|
|
output1, source1 = manual_diff_score(trans, sources_name)
|
|
#print("MNF", output1)
|
|
output2, source2 = gleu_diff_score(trans, sources_name)
|
|
#print("gleu", output2)
|
|
output3, source3 = meteor_diff_score(trans, sources_name)
|
|
#print("meteor", output3)
|
|
output4, source4, output5, source5 = rouge_diff_score(trans, sources_name)
|
|
#print("rougen", output4)
|
|
#print("rougel", output5)
|
|
|
|
if google_output == output1 == output2 == output3 == output4 == output5:
|
|
print("All outputs are same as google")
|
|
return google_output
|
|
else:
|
|
if google_output != output1:
|
|
k.append(output1)
|
|
s.append(source1)
|
|
else:
|
|
k.append(" ")
|
|
s.append(" ")
|
|
if google_output != output2:
|
|
k.append(output2)
|
|
s.append(source2)
|
|
else:
|
|
k.append(" ")
|
|
s.append(" ")
|
|
if google_output != output3:
|
|
k.append(output3)
|
|
s.append(source3)
|
|
else:
|
|
k.append(" ")
|
|
s.append(" ")
|
|
if google_output != output4:
|
|
k.append(output4)
|
|
s.append(source4)
|
|
else:
|
|
k.append(" ")
|
|
s.append(" ")
|
|
if google_output != output5:
|
|
k.append(output5)
|
|
s.append(source5)
|
|
else:
|
|
k.append(" ")
|
|
s.append(" ")
|
|
|
|
k.insert(0, sentence)
|
|
k.insert(1, google_output)
|
|
s1ANDm1, s2ANDm2, s3ANDm3 = selection_source(
|
|
s, sources_name, trans, methods_name)
|
|
# print("s1", s1ANDm1)
|
|
# print("s2", s2ANDm2)
|
|
# print("s3", s3ANDm3)
|
|
# print(s1ANDm1[0])
|
|
# print(sources_name)
|
|
|
|
#add_dial_comparison_doc1a(doc1a, table1a , k, s, s1ANDm1[0])
|
|
#add_dial_comparison_doc1b(doc1b, table1b , k, s, s1ANDm1[0])
|
|
#add_dial_comparison_doc2(doc2, table2, sentence, s1ANDm1, s2ANDm2, s3ANDm3, sources_name, trans)
|
|
#add_dial_comparison_doc22(doc2, table2, sentence, s1ANDm1, sources_name, trans)
|
|
|
|
for a, b in sources_name.items():
|
|
if b == s1ANDm1[0]:
|
|
k = a
|
|
output1 = trans[str(k)]
|
|
|
|
if s2ANDm2[0] != "":
|
|
for c, d in sources_name.items():
|
|
if d == s2ANDm2[0]:
|
|
l = c
|
|
output2 = trans[str(l)]
|
|
else:
|
|
output2 = output1
|
|
|
|
if s3ANDm3[0] != "":
|
|
for e, f in sources_name.items():
|
|
if f == s3ANDm3[0]:
|
|
m = e
|
|
output3 = trans[str(m)]
|
|
else:
|
|
output3 = output1
|
|
|
|
# print("output1", output1)
|
|
# print("output2", output2)
|
|
# print("output3", output3)
|
|
|
|
output = final_out(output1, output2, output3, target_lang)
|
|
|
|
# print("output", output)
|
|
|
|
return output
|
|
|
|
# to return the table with best 3 outputs
|
|
|
|
|
|
def add_dial_comparison_doc2(doc2, table2, sentence, s1ANDm1, s2ANDm2, s3ANDm3, sources_name, trans):
|
|
row_Cells = table2.add_row().cells
|
|
for a, b in sources_name.items():
|
|
if b == s1ANDm1[0]:
|
|
k = a
|
|
output1 = trans[str(k)]
|
|
|
|
row_Cells[0].text = sentence
|
|
row_Cells[1].text = output1
|
|
row_Cells[1].paragraphs[0].add_run('(Source : '+str(s1ANDm1[0])+')')
|
|
row_Cells[1].paragraphs[0].add_run('(Methods : '+str(s1ANDm1[1])+')')
|
|
|
|
if s2ANDm2[0] == "":
|
|
row_Cells[2].text = ""
|
|
else:
|
|
for a, b in sources_name.items():
|
|
if b == s2ANDm2[0]:
|
|
k = a
|
|
output2 = trans[str(k)]
|
|
row_Cells[2].text = output2
|
|
row_Cells[2].paragraphs[0].add_run('(Source : '+str(s2ANDm2[0])+')')
|
|
row_Cells[2].paragraphs[0].add_run('(Methods : '+str(s2ANDm2[1])+')')
|
|
|
|
if s3ANDm3[0] == "":
|
|
row_Cells[3].text = ""
|
|
else:
|
|
for a, b in sources_name.items():
|
|
if b == s3ANDm3[0]:
|
|
k = a
|
|
output3 = trans[str(k)]
|
|
row_Cells[3].text = output3
|
|
row_Cells[3].paragraphs[0].add_run('(Source : '+str(s3ANDm3[0])+')')
|
|
row_Cells[3].paragraphs[0].add_run('(Methods : '+str(s3ANDm3[1])+')')
|
|
|
|
|
|
def add_dial_comparison_doc22(doc2, table2, sentence, s1ANDm1, sources_name, trans):
|
|
row_Cells = table2.add_row().cells
|
|
for a, b in sources_name.items():
|
|
if b == s1ANDm1[0]:
|
|
k = a
|
|
output1 = trans[str(k)]
|
|
|
|
row_Cells[0].text = sentence
|
|
row_Cells[1].text = output1
|
|
|
|
|
|
class myDict(dict):
|
|
def __init__(self):
|
|
self = dict()
|
|
|
|
def add(self, key, value):
|
|
self[key] = value
|
|
|
|
|
|
def all_translator(sentence, source_lang, target_lang):
|
|
if sentence in list(string.punctuation):
|
|
return sentence
|
|
|
|
i = 0
|
|
trans = myDict()
|
|
sources_name = myDict()
|
|
try:
|
|
globals()['t%s' % i] = google(sentence, source_lang, target_lang)
|
|
#print(globals()['t%s' % i])
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "GOOGLE")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
globals()['t%s' % i] = ibm_watson(sentence, source_lang, target_lang)
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "IBM_WATSON")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
globals()['t%s' % i] = aws(sentence, source_lang, target_lang)
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "AWS")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
globals()['t%s' % i] = azure(sentence, target_lang)
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "AZURE")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
globals()['t%s' % i] = lingvanex(sentence, source_lang, target_lang)
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "LINGVANEX")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
globals()['t%s' % i] = yandex(sentence, source_lang, target_lang)
|
|
trans.add(str(i), globals()['t%s' % i])
|
|
sources_name.add(str(i), "YANDEX")
|
|
i = i+1
|
|
except:
|
|
pass
|
|
|
|
trans_text = compare_outputs(
|
|
sentence, trans["0"], trans, sources_name, target_lang)
|
|
# doc2.save("testing.docx")
|
|
return trans_text
|
|
|
|
|
|
def punct_remover_w_o_digits(string):
|
|
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~…।'''
|
|
for x in string.lower():
|
|
if x in punctuations:
|
|
string = string.replace(x, "")
|
|
return string
|
|
|
|
# Sentence = "I am Lokesh."
|
|
# source_lang = "en"
|
|
# target_lang = "hi"
|
|
# print(all_translator(Sentence, source_lang, target_lang))
|
|
# doc2.save("testing.docx")
|