591 lines
23 KiB
Python
Executable File
591 lines
23 KiB
Python
Executable File
from google.cloud import translate_v2 as Translate
|
|
from google.cloud import translate
|
|
from MNF.settings import BasePath
|
|
from requests.exceptions import SSLError
|
|
# from .script_writing import default_script
|
|
from .translation_variables import code_script
|
|
from bs4 import BeautifulSoup
|
|
from .script_detector import script_cat
|
|
from statistics import mode
|
|
from collections import Counter
|
|
# import textract
|
|
from tqdm import tqdm
|
|
import math
|
|
import sys
|
|
import re
|
|
import os
|
|
from .script_reading import getRefined, getSlugAndNonSlug, getSpeakers, getScenes
|
|
import requests
|
|
import uuid
|
|
import json
|
|
import boto3
|
|
from collections import Counter
|
|
import pandas as pd
|
|
import nltk
|
|
from nltk.corpus import stopwords
|
|
# nltk.data.clear_cache()
|
|
# nltk.download('stopwords')
|
|
# nltk.download('punkt')
|
|
import re
|
|
stop_words = set(['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"])
|
|
basePath = BasePath()
|
|
|
|
# -> Google Translation API Credentials
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = rf"{basePath}/MNF/json_keys/authentication.json"
|
|
translate_client = Translate.Client()
|
|
client = translate.TranslationServiceClient()
|
|
|
|
# -> For Detecting language of any text
|
|
def language_detector(text):
|
|
lang_detected = []
|
|
#primary language detector
|
|
try:
|
|
result = translate_client.detect_language(text)
|
|
print("length re:",len(result['language']), text, "sentence recieved")
|
|
if len(result['language']) > 3:
|
|
return (str(result['language']).split("-"))[0]
|
|
else:
|
|
return result['language']
|
|
except SSLError:
|
|
return language_detector(text)
|
|
|
|
except Exception as e:
|
|
return text
|
|
|
|
|
|
# takes too long to use this
|
|
#secondary translation_detection
|
|
try:
|
|
subscription_key = "83ce6233419541929f7ab0d3035fca58"
|
|
location = "eastus"
|
|
headers = {
|
|
'Ocp-Apim-Subscription-Key': subscription_key,
|
|
'Ocp-Apim-Subscription-Region': location,
|
|
'Content-type': 'application/json',
|
|
'X-ClientTraceId': str(uuid.uuid4())
|
|
}
|
|
params = {'api-version': '3.0'}
|
|
body = [{'text': text}]
|
|
request = requests.post("https://api.cognitive.microsofttranslator.com/detect?api-version=3.0", params=params,
|
|
headers=headers, json=body)
|
|
response = request.json()
|
|
lang_detected.append(str(response[0]['language']))
|
|
except:
|
|
print("azure is not working ")
|
|
pass
|
|
|
|
|
|
#tertiary translation_detection
|
|
try:
|
|
aws_json_path = basePath + "/MNF/json_keys"
|
|
with open(rf"{aws_json_path}/keys_aws.json") as f:
|
|
keys1 = json.load(f)
|
|
session = boto3.Session(aws_access_key_id=keys1["aws_access_key_id"],
|
|
aws_secret_access_key=keys1["aws_secret_access_key"],
|
|
region_name=keys1["region_name"])
|
|
detect_aws = session.client(service_name='comprehend', region_name='us-east-2', use_ssl=True)
|
|
pred_3 = (detect_aws.detect_dominant_language(Text=text))['Languages'][0]["LanguageCode"]
|
|
lang_detected.append(str(pred_3))
|
|
except:
|
|
print("aws is not working ")
|
|
pass
|
|
|
|
|
|
most_common_lang = Counter(lang_detected)
|
|
sorted_values = sorted(most_common_lang.values(), reverse=True) # Sort the values
|
|
sorted_dict = {}
|
|
for i in sorted_values:
|
|
for k in most_common_lang.keys():
|
|
if most_common_lang[k] == i:
|
|
sorted_dict[k] = most_common_lang[k]
|
|
sources = list(sorted_dict.keys())
|
|
return sources[0]
|
|
|
|
|
|
|
|
|
|
# -> For Detecting Script of any text
|
|
def script_det(text):
|
|
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
|
|
no_punct = ""
|
|
for char in text:
|
|
if char not in punctuations:
|
|
no_punct = char
|
|
break
|
|
script = script_cat(no_punct)[0]
|
|
return script
|
|
|
|
|
|
'''
|
|
A. Language of Highest number of full dialogues,
|
|
B. Numbers of dialogues in action line language,
|
|
C. Number of dialogues in other languages)
|
|
'''
|
|
|
|
|
|
# -> For Detecting presence of different languages in dialogues (whole sentences)
|
|
def A_B_C(dialogue_language, non_dial_src_lang):
|
|
print("line 316:dialogue_language", dialogue_language)
|
|
dict1 = dict(Counter(dialogue_language))
|
|
print("line 319:dict1", dict1)
|
|
sorted_values = sorted(dict1.values(), reverse=True) # Sort the values
|
|
print("line 321:sorted_values:", sorted_values)
|
|
sorted_dict = {}
|
|
for i in sorted_values:
|
|
for k in dict1.keys():
|
|
if dict1[k] == i:
|
|
sorted_dict[k] = dict1[k]
|
|
sources = list(sorted_dict.keys())
|
|
print("line 328: sources: ", sources)
|
|
A = sources[0]
|
|
print("Most Prominent Dialogue Language", A)
|
|
if len(sources) == 1:
|
|
B = 0
|
|
C = 0
|
|
elif non_dial_src_lang not in sources:
|
|
B = 0
|
|
C = sum(sorted_values[1:])
|
|
else:
|
|
if A == non_dial_src_lang:
|
|
B = 0
|
|
else:
|
|
B = sorted_values[sources.index(non_dial_src_lang)]
|
|
C = sum(sorted_values[1:]) - B
|
|
return A, B, C
|
|
|
|
|
|
# -> Detection of Different Lanugages and Scripts in Script
|
|
def dial_each_word_lang1(non_dial_src_lang, dial):
|
|
for word in dial.split():
|
|
if word.lower() not in stop_words:
|
|
if language_detector(word) == non_dial_src_lang:
|
|
return "True"
|
|
return "False"
|
|
|
|
|
|
# -> Detection of Different Lanugages and Scripts in Script
|
|
def dial_each_word_lang2(non_dial_src_lang, A, dial):
|
|
for word in dial.split():
|
|
if word.lower() not in stop_words:
|
|
if (language_detector(word) != non_dial_src_lang) or (language_detector(word) != A):
|
|
return "True"
|
|
return "False"
|
|
|
|
|
|
# -> Detection of words in lines with different languages
|
|
def word_with_actionline_other_lang(lines, A, non_dial_src_lang):
|
|
dials_with_actionline_langs = 0
|
|
dials_with_other_langs = 0
|
|
lineno = 0
|
|
actionline_lang_output = "False"
|
|
other_lang_output = "False"
|
|
ignore_actionline_match = False
|
|
if A == non_dial_src_lang:
|
|
ignore_actionline_match = True
|
|
for i, line in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
if line[3] == "dialogue":
|
|
# [speaker] = line.keys()
|
|
# if speaker == 'Transition':
|
|
# continue
|
|
dial_src_lang = language_detector(line[2])
|
|
if actionline_lang_output == "False" or other_lang_output == "False":
|
|
print(
|
|
"Still Searching if Words of other langs are present or not...")
|
|
if dial_src_lang == A:
|
|
if actionline_lang_output != "True" and not ignore_actionline_match:
|
|
output = dial_each_word_lang1(
|
|
non_dial_src_lang, line[2])
|
|
if output == "True":
|
|
dials_with_actionline_langs += 1
|
|
if dials_with_actionline_langs >= 3:
|
|
actionline_lang_output = "True"
|
|
if other_lang_output != "True":
|
|
output = dial_each_word_lang2(
|
|
non_dial_src_lang, A, line[2])
|
|
if output == "True":
|
|
dials_with_other_langs += 1
|
|
if dials_with_other_langs >= 3:
|
|
other_lang_output = "True"
|
|
else:
|
|
print("Found Presence of other Langs in Words")
|
|
return actionline_lang_output, other_lang_output
|
|
|
|
return actionline_lang_output, other_lang_output
|
|
|
|
|
|
def convert_to_pdf(input_docx, out_folder):
|
|
import subprocess
|
|
p = subprocess.Popen(
|
|
[
|
|
"libreoffice",
|
|
"--headless",
|
|
"--convert-to",
|
|
"pdf",
|
|
"--outdir",
|
|
out_folder,
|
|
input_docx,
|
|
]
|
|
)
|
|
print(["--convert-to", "pdf", input_docx])
|
|
|
|
p.communicate()
|
|
|
|
|
|
# -> Detection of Different Lanugages and Scripts in Script
|
|
def getInputs(request, filename1, id=None):
|
|
from centralisedFileSystem.models import Script
|
|
from scriptAudit.models import ScriptAuditModel
|
|
from utils import filesystem
|
|
from scriptAudit.sa_functions import conv_to_txt, convert_txt_to_docx, fdx_to_audited_df
|
|
from django.core.files.base import ContentFile
|
|
from auto_email.views import sendmail
|
|
import time
|
|
from scriptAudit.mnf_script_audit import NeutralAudit
|
|
from scriptAudit.models import States
|
|
import PyPDF2
|
|
from utils import utilities
|
|
from django.contrib.auth.models import User
|
|
original_stdout = sys.stdout
|
|
# f = open(f"{basePath}/log/debu77.log", "w")
|
|
# sys.stdout = original_stdout
|
|
|
|
print("Detecting Languages and Scripts present in Script")
|
|
|
|
# is_fdx = False
|
|
|
|
# if ((((filename1).split("/"))[-1]).split("."))[-1] == "fdx":
|
|
# is_fdx = True
|
|
#
|
|
# if is_fdx:
|
|
# filer = open(filename1, 'r')
|
|
# text = fdx_to_txt(filer)
|
|
# filename = rf"{basePath}/conversion/translation/file_lines.txt"
|
|
# f = open(filename, 'w')
|
|
# f.write(text)
|
|
# f.close()
|
|
# else:
|
|
# text = textract.process(filename1, encoding="utf8", errors='ignore')
|
|
# filename = rf"{basePath}/conversion/translation/file_lines.txt"
|
|
# f = open(filename, 'wb')
|
|
# f.write(text)
|
|
# f.close()
|
|
|
|
|
|
"""
|
|
new code for getting text from any type of file
|
|
"""
|
|
ext = (((filename1.split("/"))[-1]).split("."))[-1]
|
|
|
|
if ext == "fdx":
|
|
print("fdx part")
|
|
file = ContentFile(
|
|
open(filename1, "rb").read(),
|
|
(filename1.split("/"))[-1],
|
|
)
|
|
print(file,"<-this is the file")
|
|
with open(filename1, 'r') as file111:
|
|
xml_data = file111.read()
|
|
soup = BeautifulSoup(xml_data, "xml")
|
|
paragraphs = soup.find_all("Paragraph")
|
|
for para in paragraphs:
|
|
elem = para.find("SceneProperties")
|
|
if elem is not None:
|
|
numPages = elem.attrs['Page']
|
|
# df = fdx_to_audited_df(filename1)
|
|
# pd.set_option('display.max_rows', None)
|
|
# pd.set_option('display.max_columns', None)
|
|
# print("step 6")
|
|
# print("step 7")
|
|
# dataframe = df
|
|
# list_of_lists = dataframe.values.tolist()
|
|
#
|
|
# last_line_not_upper = 60
|
|
# for idx in range(60, 50, -1):
|
|
# if (str(list_of_lists[idx]['content']).strip() == "" or
|
|
# (str(list_of_lists[idx]['content']).isupper() and len(list_of_lists[idx]['content']) > 0) or
|
|
# ")" in str(list_of_lists[idx]['content']).strip() or
|
|
# "(" in str(list_of_lists[idx]['content']).strip()):
|
|
# pass
|
|
# else:
|
|
# last_line_not_upper = idx
|
|
# break
|
|
# list_of_lists = list_of_lists[:last_line_not_upper + 1]
|
|
else:
|
|
filee = "".join(((filename1.split("."))[:-1]))
|
|
conv_to_txt(filename1, rf"{filee}_file_lines.docx",
|
|
rf"{filee}_file_lines.txt")
|
|
|
|
|
|
with open(rf"{filee}_file_lines.txt", 'r') as file:
|
|
lines = file.readlines()
|
|
|
|
cleaned_lines = []
|
|
prev_line_blank = False
|
|
|
|
for line in lines:
|
|
if line.strip() == '' or line.strip() == "\\n":
|
|
if not prev_line_blank:
|
|
cleaned_lines.append(line)
|
|
prev_line_blank = True
|
|
else:
|
|
cleaned_lines.append(line)
|
|
prev_line_blank = False
|
|
|
|
with open(rf"{filee}_cleaned_file.txt", 'w') as file:
|
|
file.writelines(cleaned_lines)
|
|
|
|
with open(rf"{filee}_cleaned_file.txt") as file:
|
|
cleaned_lines_data = file.readlines()
|
|
total_lines = len(cleaned_lines_data)
|
|
print("name of file", filename1)
|
|
|
|
if ext == "docx":
|
|
numPages = math.ceil(total_lines / 50) if math.ceil(total_lines / 50) > 0 else 1
|
|
elif ext == "pdf":
|
|
file = open(filename1, 'rb')
|
|
pdfReader = PyPDF2.PdfReader(file)
|
|
numPages = len(pdfReader.pages)
|
|
# elif ext == "fdx":
|
|
# with open(filename1, 'r') as file:
|
|
# xml_data = file.read()
|
|
# soup = BeautifulSoup(xml_data, "xml")
|
|
# paragraphs = soup.find_all("Paragraph")
|
|
# for para in paragraphs:
|
|
# elem = para.find("SceneProperties")
|
|
# if elem is not None:
|
|
# numPages = elem.attrs['Page']
|
|
# fdx_to_docx = "".join(((filename1.split("."))[:-1])) + ".docx"
|
|
# convert_txt_to_docx(rf"{filee}_file_lines.txt", fdx_to_docx)
|
|
# convert_to_pdf(fdx_to_docx, rf"{basePath}/media/scripts/")
|
|
# time.sleep(5)
|
|
# os.chmod("".join(((filename1.split("."))[:-1])) + ".pdf", 0o777)
|
|
# file = open("".join(((filename1.split("."))[:-1])) + ".pdf", 'rb')
|
|
#
|
|
# pdfReader = PyPDF2.PdfReader(file)
|
|
# numPages = len(pdfReader.pages)
|
|
# numPages = math.ceil(total_lines / 50) if math.ceil(total_lines / 50) > 0 else 1
|
|
# divison_factor = 50 if ext == "docx" or ext == "pdf" else 18
|
|
# numPages = math.ceil(total_lines / divison_factor) if math.ceil(total_lines / divison_factor) > 0 else 1
|
|
initial_lines = 60
|
|
if total_lines < initial_lines:
|
|
txt_file_200 = "".join((cleaned_lines_data)[:total_lines])
|
|
else:
|
|
last_line_not_upper = 60
|
|
for idx in range(60, 50, -1):
|
|
if (str(cleaned_lines_data[idx]).strip() == "" or
|
|
(str(cleaned_lines_data[idx]).isupper() and len(cleaned_lines_data[idx]) > 0) or
|
|
")" in str(cleaned_lines_data[idx]).strip() or
|
|
"(" in str(cleaned_lines_data[idx]).strip()):
|
|
pass
|
|
else:
|
|
last_line_not_upper = idx
|
|
break
|
|
print(cleaned_lines_data)
|
|
|
|
txt_file_200 = "".join((cleaned_lines_data)[0:last_line_not_upper+1])
|
|
|
|
language_selection_audit_inp = rf"{filee}_file_lines_2003.txt"
|
|
f = open(language_selection_audit_inp, 'w')
|
|
f.write(txt_file_200)
|
|
f.close()
|
|
audit_inp = open(language_selection_audit_inp, 'rb').read()
|
|
file = ContentFile(
|
|
audit_inp,
|
|
(language_selection_audit_inp.split("/"))[-1],
|
|
)
|
|
|
|
|
|
|
|
language_code = "en"
|
|
name_script = str((((filename1.split("/"))[-1]).split("."))[0]) + "_language-audit"
|
|
|
|
user = User.objects.get(id=1)
|
|
result = filesystem.new_screenplay_without_audit_in_background(
|
|
user,
|
|
request.user.username,
|
|
str(name_script),
|
|
file,
|
|
"script-original",
|
|
language_code,
|
|
)
|
|
print("already called", result)
|
|
audit_id = result.get("script", {}).get("id")
|
|
ScriptAuditModel.objects.update_or_create(
|
|
script=Script.objects.get(
|
|
id=audit_id
|
|
),
|
|
defaults={"status": States.STARTED}
|
|
)
|
|
audit = NeutralAudit(audit_id)
|
|
status = ScriptAuditModel.objects.get(
|
|
script=Script.objects.get(
|
|
id=audit_id
|
|
)
|
|
)
|
|
print("audit will start")
|
|
try:
|
|
if ext == "fdx":
|
|
audit.audit_fdx()
|
|
else:
|
|
audit.audit()
|
|
status.status = "SUCCESS"
|
|
status.save()
|
|
except Exception as e:
|
|
print("Error of Audit is:", e)
|
|
status.status = "FAILURE"
|
|
status.save()
|
|
to_email = [request.user.email]
|
|
email_code = 'SB2'
|
|
sendmail(to_email=to_email, email_code=email_code)
|
|
return None
|
|
sys.stdout = original_stdout
|
|
# result = filesystem.new_screenplay(
|
|
# user,
|
|
# request.user.username,
|
|
# name_script,
|
|
# file,
|
|
# "script-original",
|
|
# language_code,
|
|
# )
|
|
# audit_id = result.get("script", {}).get("id")
|
|
# while True:
|
|
# try:
|
|
# status = ScriptAuditModel.objects.get(
|
|
# script=Script.objects.get(id=audit_id)).status
|
|
# if status == "SUCCESS":
|
|
# break
|
|
# elif status == "FAILURE":
|
|
# to_email = [request.user.email]
|
|
# email_code = 'SB2'
|
|
# sendmail(to_email=to_email, email_code=email_code)
|
|
# return None
|
|
# elif status == "STARTED" or status == "PENDING":
|
|
# pass
|
|
# except:
|
|
# pass
|
|
# time.sleep(1)
|
|
|
|
print("step 3")
|
|
print("audit id -> ", audit_id)
|
|
file_path_ = filesystem.get_file_path(
|
|
audit_id, "script-csv")
|
|
print("step 4")
|
|
try:
|
|
print("step 5")
|
|
df = pd.read_csv(file_path_, encoding="utf-8")
|
|
except UnicodeError:
|
|
df = pd.read_csv(file_path_, encoding="utf-16")
|
|
pd.set_option('display.max_rows', None)
|
|
pd.set_option('display.max_columns', None)
|
|
print("step 6")
|
|
if id is not None:
|
|
from mnfapp.models import MNFScriptDatabase
|
|
script_get = MNFScriptDatabase.objects.get(id=id)
|
|
script_get.language_audit_id = audit_id
|
|
script_get.save()
|
|
print("step 7")
|
|
dataframe = df
|
|
list_of_lists = dataframe.values.tolist()
|
|
print("step 8")
|
|
# sys.stdout = original_stdout
|
|
# Print the resulting list
|
|
print("Audited Df ->", list_of_lists)
|
|
|
|
if ext == "fdx":
|
|
total_lines = len(list_of_lists)
|
|
initial_lines = 60
|
|
if total_lines < initial_lines:
|
|
last_line_not_upper = total_lines
|
|
else:
|
|
last_line_not_upper = 60
|
|
for idx in range(60, 50, -1):
|
|
if (str(list_of_lists[idx][2]).strip() == "" or
|
|
(str(list_of_lists[idx][2]).isupper() and len(list_of_lists[idx][2]) > 0) or
|
|
")" in str(list_of_lists[idx][2]).strip() or
|
|
"(" in str(list_of_lists[idx][2]).strip()):
|
|
pass
|
|
else:
|
|
last_line_not_upper = idx
|
|
break
|
|
list_of_lists = list_of_lists[:last_line_not_upper+1]
|
|
|
|
from .multiprocessing_funcs import detecting_languages
|
|
import multiprocessing
|
|
num_processes = 4
|
|
with multiprocessing.Pool(processes=num_processes) as pool:
|
|
results = pool.map(detecting_languages, list_of_lists)
|
|
print("ALL Results -> ", results)
|
|
# for result in results:
|
|
# if result[0] != "" and result[1] != "":
|
|
# non_dial_src_lang = result[0]
|
|
# non_dial_src_script = result[1]
|
|
# break
|
|
# print("step 4", non_dial_src_lang, non_dial_src_script)
|
|
languages_of_actionlines = [result[0] for result in results if result[0]]
|
|
script_of_actionlines = [result[1] for result in results if result[1]]
|
|
|
|
non_dial_src_lang = Counter(languages_of_actionlines).most_common(1)[0][0]
|
|
non_dial_src_script = Counter(script_of_actionlines).most_common(1)[0][0]
|
|
|
|
language_of_all_dialogues = [result[2] for result in results if result[2]]
|
|
# new code ends
|
|
script_of_all_dialogues = [result[3] for result in results if result[3]]
|
|
|
|
# -> For Detecting presence of different languages in dialogues (whole sentences)
|
|
A, B, C = A_B_C(language_of_all_dialogues, non_dial_src_lang)
|
|
print("A,B,C", A, B, C)
|
|
totaldials = len(language_of_all_dialogues)
|
|
try:
|
|
dial_src_script = mode(script_of_all_dialogues)
|
|
except:
|
|
dial_src_script = "Common"
|
|
for script in list(Counter(script_of_all_dialogues).values()):
|
|
if script != "Common":
|
|
dial_src_script = script
|
|
break
|
|
|
|
dial_src_lang = A
|
|
one_step_process = "Yes" if dial_src_script == code_script[A] else "Can_not_say"
|
|
# word_lang_with_actionline = word_with_actionline(scenes, A, non_dial_src_lang)
|
|
# word_lang_with_other = word_with_other(scenes, A, non_dial_src_lang)
|
|
# -> For Detecting presence of different languages in dialogues (words)
|
|
word_lang_with_actionline, word_lang_with_other = word_with_actionline_other_lang(
|
|
list_of_lists, A, non_dial_src_lang)
|
|
print("A = {} B = {} C = {}".format(A, B, C))
|
|
print("dial_language", A)
|
|
print("dial_src_script", dial_src_script)
|
|
|
|
if round(B / totaldials, 2) > 0.15:
|
|
print("UI option3 - yes")
|
|
UI_option3 = "Yes"
|
|
else:
|
|
print("UI option3 - no")
|
|
UI_option3 = "No"
|
|
if round(C / totaldials, 2) > 0.20:
|
|
print("UI option4 - yes")
|
|
UI_option4 = "Yes"
|
|
else:
|
|
print("UI option4 - no")
|
|
UI_option4 = "No"
|
|
if word_lang_with_actionline == "True":
|
|
print("UI option5 - Yes")
|
|
UI_option5 = "Yes"
|
|
else:
|
|
print("UI_option5 - NO")
|
|
UI_option5 = "No"
|
|
print("checking other lang", word_lang_with_other)
|
|
if word_lang_with_other == "True":
|
|
print("UI option6 - Yes")
|
|
UI_option6 = "Yes"
|
|
else:
|
|
print("UI option6 - No")
|
|
UI_option6 = "No"
|
|
|
|
print("*******************------------Detection------------***********************")
|
|
print(UI_option3, UI_option4, UI_option5, UI_option6, non_dial_src_script)
|
|
# f.close()
|
|
return [non_dial_src_lang, dial_src_lang, dial_src_script, non_dial_src_script, UI_option3, UI_option4, UI_option5,
|
|
UI_option6, numPages]
|